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1. INTRODUCTION 

There are many methods for approximating the soiution of a boundary value 
problem for Laplace’s equation, e.g., finite difference or finite element methods and 
boundary integral methods. None of these methods is accurate, however, when the 
solution has a singularity on the boundary which is due either to a (geometric) 
corner or to an abrupt shift in boundary values. 

Many methods have been proposed to treat these difficulties, only some of which 
shall be mentioned here. The use of the asymptotic behavior of the solution is one, 
and Fix et al. [2] included some of the lower order singular functions of the 
asymptotic expansion in their space of trial functions for the finite element met 
Another consideration is that of Li [S] who combines the finite element met 
used away from the corner, with a Ritz-Galerkin technique, using the s~ng~~a~ 
functions near the corner. Still another approach is the boundary integral 
method, see, e.g., Xanthis et al. [ll]. There is also, of course, the m 
refining the mesh (finite-difference or finite-element methods 
in a neighborhood of the corner, see, e.g., Gregory et al. [3 
Whiteman and Papamichael [9] conformal mapping tee 
special isoparametric elements at the corner were used by 
and Shaw [4]. See also Whiteman [S] for the dual-series m 

In this paper a very simple method for subtracting off th 
sidered. The method is based on an algorithm (see Wigley 
coefficients of the asymptotic expansion of the solution 
method has the great advantage of allowing existing computer progr 
modified in a relatively easy manner in order to calculale as many co 
desired. In particular, the first coefficient, sometimes known as the stir 
factor, can be computed with accuracy and ease. 

These calculated coefficients are then used to “subtract off the singularity” 
sense of modifying the original boundary value problem, solving the mod& 
and continuing the process. Some numerical results will be given w 
method by comparing some calculated solutions with exact (known) solutions an 
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(b) by comparing some calculated solutions to problems with unknown solutions to 
results given in some of the above papers. 

2. SUBTRACTING OFF THE SINGULARITY 

For the sake of example we first consider the well-known problem of Motz, 
which has become a benchmark for problems of the sort being considered. In the 
rectangle with vertices () 1,O) and (+ 1, 1) is sought a harmonic function u(x, y) 
whose outward normal derivative vanishes on the top and the right-hand side of the 
rectangle, as well as on the segment y=O, x<:O; and for which u=O on y=O, 
x > 0, and u = 500 on the left-hand side of the rectangle (see Fig. 1). 

As is well known, the solution u(x, y) has a singularity at the origin and is 
asymptotic to a series of the form 

% ukr(2k+1)‘2 sin((2k+ 1)8/2). (1) 
k=O 

We now propose a numerical scheme for calculating the coefficients uk, based on 
[lo]. Let r, and r, be two semi-circles in the upper half plane, concentric about 
the origin, and of radii 6 and A, respectively, with 0 < 6 < A 6 1. Let k be a positive 
integer and let v be defined on the upper half plane by 

v = (y-W+ 1M2 -A-(Zkf’)r(2k+1)‘2) sin((2k+ 1)0/z). 

Observe that u is harmonic and assumes the same boundary values on the x-axis as 
does the solution U. In addition, v vanishes on the arc Y = A and is singular at the 
origin. Green’s theorem is now applied to the functions u and v over the half- 
annulus which is bounded by the two above-mentioned semi-circles and the x-axis. 
Since u and v are both harmonic and satisfy the same homogeneous boundary 
conditions on the x-axis, it follows directly from Green’s theorem that 

s (uv, - vu,) ds = s 
(UD, - vu,) ds, 

ra fA 

where both integrals are taken in the counterclockwise sense. 

(2) 

A Un’ 0 u=u B 

FIG. 1. The problem of Motz. 
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Let K be a positive integer and let u be replaced by its asymptotic expression 

2 a,r’2k+1)‘2sin((%k+ 1)8/2)+O(u’2K+1)i2) 
k=O 

Due to the orthogonality of the sine functions on the interval 0 6 9 d n the left- 
hand side of (2) can be replaced by the expression 

- t (2k + 1) rcak + ~(6) (3) 

where E -+ 0 as 6 -+ 0. Since the function v vanishes on the arc Y = A, and the right- 
hand side of (2) is independent of 6, Eq. (1) can be solved by means of (3) for the 
coefficient ak : 

ak = -(2/(2k+ l)n){ uv,ds 
r.4 

5 n = (2&) /w+~)P u(A, 0) sin((2kf 1)8/2) d6. 
0 

An approximation uh of the function u(A, 9) can then be obtained by some 
appropriate method (for the calculations reported on in this paper, unite-difference 
equations on a uniform square mesh of side h were used, together with the nine- 
point Laplacian and SOR). The ak can then be computed using (4) with some 
appropriate quadrature rule and with the approximation uk replacing U. For 
calculations in the present paper a Romberg quadrature was used. Since 
approximation is more likely to be accurate away from the singular point, A should 
be taken as large as possible (in the present case A = I ). 

Let the results of these computations be called a:, and then define the first-or 
approximations 5: to the ak by 8: = a:, k = 0, 1, . . . . K. 

The boundary values of the original problem are then modified by subtractive off 
the series 

K 

w1 = C ii~r(2k+1)‘2 sin((2k + I )8/2). 
k=O 

On the top of the rectangle, e.g., the boundary condition would now be au/an = 
- adjan. 

The finite-difference process is then repeated for this w boundary value 
problem, and new coefficients g: are computed. The second-o r approximation of 
ak is then defined by ii: = ai + 8:. In general the mth approximation is defined by 
ii” = iir- ’ + 6~ and the series k 

is used to modify the boundary values. 
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The process is then continued until the &J are smaller in magnitude than some 
prescribed upper limit. 

Finally, the numerical solution of the original boundary value problem is con- 
structed in the following way. At any point P with polar coordinates (v, 9) one 
takes the most recent solution uJP) of the last modified boundary value problem 
and adds to it the series (5). 

3. APPLICATIONS OF THE METHOD 

a. The Problem of Motz 

In this section we shall give some comparisons between the results of the present 
method and those of [3, 5, 6, and 111. The calculation of the coefficients ak was 
carried out for K 6 13. This was an arbitrary choice, as the method introduced in 
this paper allows these coefficients to be calculated in a very simple manner: the 
finite difference scheme on a regular square grid of size h is run and the solution z+, 
is inserted into (4) to calculate the coefftcients. In most of the present calculations K 
was taken equal to 8 and the mesh size h varied between + and &. The radius A of 
the path of integration was generally taken equal to 1.0, though reasonable results 
were also obtained with A = 0.5. See Tables I-III for comparisons. 

The question of convergence of the asymptotic expansion (1) is, in general, a dif- 
ficult one. For the problem at hand, however, the matter is easily settled. According 
to Hadamard’s theorem the radius of convergence of (1) is given by the reciprocal 
of the quantity lim sup la, 1 Ilk and the latter is easily shown to be equal to A -‘. 
Thus the series converges absolutely and uniformly for r < A. A can clearly be taken 
equal to 1 but an improvement can be made by the following simple argument. By 
reflecting the function u - 500 across the top of the rectangle as an even function of 
y we get a continuation of U- 500 to the rectangle - 1 -C x < 1, 0 < y ~2. This 
function can then be extended to the left by reflection as an odd function, and to 
the right as an even function. It is thus seen that the series for u - 500, and thus the 
series for u converges uniformly and absolutely for r < 2. Since the new extended 
solution obviously has a singularity at the point (0,2), the radius of convergence of 
the series (1) is equal to 2. 

TABLE I 

Numerical Solution of the Problem of Motz-First Comparison 

(XL, YJ (3, :, (0, f) (-f,# (B>h) CO,&) t-&.&8) C-&,0) (-b,O) 

Li 18.4732 141.133 243.567 33.5478 53.1192 83.5686 76.315 
Thatcher 78.24 140.9 243.3 33.37 52.89 83.20 76.01 
WandP 78.56 141.6 243.8 33.59 53.19 83.67 76.41 
Wigley 78.559 141.560 243.812 33.592 53.186 83.671 76.408 134.447 
XBA 76.41 134.45 
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TABLE II 

Numerical Solution of the Problem of Motz-Second Comparison 

(XL> L’,) (0,:) C-$,0) ($5 3, 

Gregory et al. 103.78 156.40 90.83 
W and P 103.77 156.48 91.34 
Wigley 103.768 156.483 91.343 

To give an indication of how accurate the series representation of the solution is: 
the coefficients Lik were calculated for k < K = 13 with h = &. Iteration was Carrie 
out until 16ij < 10e6. Values of the solution were then approximated by the 
truncated series on the left side of the rectangle, at the points (- 1, j/IO), for 
j = 0, 1, ..~) 10. The true solution is of course equal to 500 at these points. 
greatest error in the calculation occurred at y =0.8 with a calculated value of 
500.0036 and a relative error of 7.2 x 10e6. 

b. The Cracked Beam of Fix et al. 

A similar study has been carried out for the problem of torsion of a cracked 
beam with a square cross section (see Fix et ai. [2]). After symmetrizing, the 
problem is reduced to solving Poisson’s equation in the rectangle with vertices 
x= +&, y=o, ; and with boundary values as indicated in Fig. 2. Tn [2] the 
problem was solved by introducing the singular functions of the asymptotic ex 
sion (1) to the finite element space of trial functions which used various sphnes of 
degrees one and three. To check for accuracy the authors also used quintie splines. 

TABLE III 

N Wigley XBA Li Thatcher Svmm 

0 401.163 401.175 400.665 400.8 4QI.2 
1 - 87.655 - 87.601 - 87.7679 -88.0 - 87.2 
2 17.238 17.236 17.6683 17.3 
3 8.071 8.049 9.663 11 
4 1.440 1.398 1.79988 
5 -0.331 
6 0.275 
I 0.087 
8 0.0336 
9 -0.0154 

10 0.0073 
11 0.0032 
12 0.0012 
13 - o.oOO5 

- 
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FIG. 2. The cracked square (symmetrized) of Fix et al. 

In engineering problems of this kind a very important constant is the so-called 
stress intensity factor, which in the present case is the coefficient a,. This constant 
gives a measure of “the amount of torsion the beam can endure before fracture 
occurs” [2]. 

The problem can be reduced to Laplace’s equation by considering the function 
v = u + y2/2, which is harmonic and has the same boundary values as U, except on 
the top of the rectangle where v(x, 4) = $. The method applied earlier to the problem 
of Motz works equally well here. First, the asymptotic series for the function u has 
(by an argument almost identical to the one given earlier) a radius of convergence 
equal to one (observe that the rectangle here is half the size of the previous one). 
Our calculated results are given in Tables IV and V. It must be pointed out that the 
coefficients a2 and a, given in Table V were not equal to zero, the values listed in 
the table having been merely rounded off. 

4. APPROXIMATIONS OE KNOWN SOLUTIONS 

Also considered were some problems in a domain with a slit. Let u be harmonic 
on the square with vertices ( ) 1, + l), with the exception of a slit along the positive 
x-axis (see Fig. 3). Let the function u vanish on the upper side of the slit, and let the 
normal derivative &/dn vanish on the lower side of the slit. On the outer boundary 
of the square let u be defined by u = CD, where @ is given by 

ukr(2k+1)‘4 sin((2k+ 1)6/4). (6) 
k=O 

TABLE IV 

Numerical Solution of the Cracked Beam Problem 

(4 Y) (0, ii) (443 $) (-%a, 

Fix et al. 0.027425 0.032877 0.070844 
Wigley 0.027428 0.032878 0.070844 
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TABLE V 

Values of the Coeflicients (Cracked Beam Problem) 

k 0 1 2 3 4 5 

Fix ef al. 0.1917 
Wigley 0.19112 0.11811 0.00000 0.00000 -0.01256 0.01905 

The solution to the boundary value problem is, of course, u = @. Some test 
problems were considered by various judicious choices of the coeflicients ak. 
vergence studies were carried out in both the 1” and l2 norms. 

First considered were problems in which all but a finite number of the ak are 
zero, say ak - - 0 for k > m. Approximations were then computed by selecting a non- 
negative integer K and computing an approximation to the solution u and thence 
approximations of the coefficients ak for 0 <k < K. It was found that if K is taken 
> m then convergence was fast and extremely accurate (to within rna~hi~~-~~§~~Q~~. 

If, on the other hand, K is not taken large enough, the ‘“missed” coefficie 
ak for K < k < m, spoil the calculations unless the coefficients themselves are small. 
Thus in the general case (6) it would seem appropriate to experiment with various 
values of K. 

Additionally, two infinite series were tested by choosing the ak in (6) in sue 
way that the series can be summed. The first example was gotten by taking ak = 
( - 1 Jk/(2k + l)!, for which the series (6) becomes 

@ = Im(sin z1j4} 

= COS(Y~‘~ cos S/4) sinh(r1j4 sin 9/4) 

and which converges for r < 30. As indicated in Table VI, with h = 4 and K = 7 t 
maximum error between the computed solution and the true solution occurred at 
the point (f, 3) and was of the order 1.6 x IOe5. The largest error in the com- 
putation of the coefficients was 5.3 x lo-‘. 

FIG. 3. The test problems 
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TABLE VI 

Comparisons with True Solutions 

I” norm 
Location 

l2 norm 

Max error 
of coeffs. 

First series 

Orig. error Final error 

0.213 0.000016 
(4, 0) (3, $1 
0.086 o.OOOOO4 

N/A 5.3 x lo-’ 

Second series 

Orig. error Final error 

0.173 0.0019 
G> 0) (&3) 
0.046 o.ooo49 

N/A 7.1 x 10-A 

The second example of the infinite series (6) studied was formed by taking ak = 
2-(2k+1), which yields the geometric series 

@=Im 
(2/2)“4 

1 - (42)“” 

= (r/2)‘j4 sin(8/4)(1 + (r/2)“‘) 
1 - 2(r/2)‘12 cos(O/2) + r/2 

which converges only for r < 2. It will be noted in Table VI, in which “first” and 
“second” series refer to the first and second infinite series of this section, that 
convergence for the present case is nowhere near as good as for the first series. The 
difference seems to lie with the speeds of convergence of the two power series, the 
latter series converging quite slowly in comparison with the former. Nevertheless 
application of the method did improve convergence in both the I” and I2 norms by 
two orders of magnitude. Observe too that the maximum error for the second series 
occurs at the point (2, f), which is not near the corner. 

TABLE VII 

Comparisons with PLTMG 

(X> Y) 

(-0.1, -0.1) 0.42596 0.41927 0.01571 0.42601 0.00011 
(-0.1,O.l) 0.41822 0.40880 0.02252 0.41820 0.00004 
(0.1, -0.1) 0.40988 0.40400 0.01434 0.40989 0.00004 
(0.1,O.l) 0.21982 0.21727 0.01158 0.21987 0.00025 
(-0.8, -0.8) 0.59002 0.58877 0.00213 0.59017 0.00025 
(-0.8,0.8) 0.85269 0.85062 0.00243 0.85249 0.00024 
(0.8, -0.8) 0.50427 0.50311 0.00230 0.50422 0.00010 
(0.8, 0.8) 1.68484 1.68450 0.00020 1.68499 o.oooo9 

True value PLMTG rel error Wigley rel error 
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Finally, a comparison was made between the method given in this paper a 
results gotten by an application of PLTMG [ 11, an adaptive grid refinement 
which uses approximations which are piecewise linear on finite elem 
second infinite series given above (the geometric one) was run using 
Results are compared in Table VII, the comparisons being made at the pomts x9 
y = )Q.l, “rO.8 (eight points), these points having been chosen because half are 
“near” the corner and half are not. It should be observed that the methods in 
this paper give equally good results at “near” and “far” points, whereas PL iS 

much more inaccurate near the corner, despite the fact that the grid is highly 
refined there. 

5. DISCUSSION 

A method for subtracting off a singularity at a corner for Laplace’s equation has 
been discussed. Though the boundary values in the examples listed above were of 
the mixed kind at the singularity, the method applies equally well to Dirichlet or 
Neumann conditions as well as to interior angles other than n or 2n, as can be seen 
by considering slight modifications of the function v of Section two. 

The method is very easy to apply in that it can be accommodated by existing 
computer programs through only slight changes. It adapts to any method: boun- 
dary integral, finite difference, finite element, etc. If indeed high accuracy comes 
with a price, then the additional price to be paid here is low: the extra program- 
ming time is small, and extra computer time was not great; most of the results 
reported on in this paper involved three or four sweeps (one sweep meaning 
adjusting the boundary values, SOR, and quadrature), with a maximum of five, 

Finally, for the engineer who only wants a rough and quick approximation of a 
stress intensity factor, it is worth mentioning that one sweep may suffice, so that an 

existing program need only be coupled with one additional quadrature. 
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